下一代高分辨率汽车雷达(4D雷达)可以提供额外的高程测量和较密集的点云,从而在自动驾驶中具有3D传感的巨大潜力。在本文中,我们介绍了一个名为TJ4Dradset的数据集,其中包括4D雷达点用于自动驾驶研究。该数据集是在各种驾驶场景中收集的,连续44个序列中总共有7757个同步帧,这些序列用3D边界框和轨道ID很好地注释。我们为数据集提供了基于4D雷达的3D对象检测基线,以证明4D雷达点云的深度学习方法的有效性。可以通过以下链接访问数据集:https://github.com/tjradarlab/tj4dradset。
translated by 谷歌翻译
Recent research has reported a performance degradation in self-supervised contrastive learning for specially designed efficient networks, such as MobileNet and EfficientNet. A common practice to address this problem is to introduce a pretrained contrastive teacher model and train the lightweight networks with distillation signals generated by the teacher. However, it is time and resource consuming to pretrain a teacher model when it is not available. In this work, we aim to establish a stronger baseline for lightweight contrastive models without using a pretrained teacher model. Specifically, we show that the optimal recipe for efficient models is different from that of larger models, and using the same training settings as ResNet50, as previous research does, is inappropriate. Additionally, we observe a common issu e in contrastive learning where either the positive or negative views can be noisy, and propose a smoothed version of InfoNCE loss to alleviate this problem. As a result, we successfully improve the linear evaluation results from 36.3\% to 62.3\% for MobileNet-V3-Large and from 42.2\% to 65.8\% for EfficientNet-B0 on ImageNet, closing the accuracy gap to ResNet50 with $5\times$ fewer parameters. We hope our research will facilitate the usage of lightweight contrastive models.
translated by 谷歌翻译
Large language models have exhibited intriguing in-context learning capability, achieving promising zero- and few-shot performance without updating the parameters. However, conventional in-context learning is usually restricted by length constraints, rendering it ineffective to absorb supervision from a large number of examples. In order to go beyond few shots, we introduce structured prompting that breaks the length limit and scales in-context learning to thousands of examples. Specifically, demonstration examples are separately encoded with well-designed position embeddings, and then they are jointly attended by the test example using a rescaled attention mechanism. So we can scale the number of exemplars with linear complexity instead of quadratic complexity with respect to length. Experimental results on a diverse set of tasks show that our approach improves end-task performance and reduces evaluation variance over conventional in-context learning as the number of demonstration examples increases. Code has been released at https://aka.ms/structured-prompting.
translated by 谷歌翻译
The problem of predicting driver attention from the driving perspective is gaining the increasing research focuses due to its remarkable significance for autonomous driving and assisted driving systems. Driving experience is extremely important for driver attention prediction, a skilled driver is able to effortlessly predict oncoming danger (before it becomes salient) based on driving experience and quickly pay attention on the corresponding zones. However, the nonobjective driving experience is difficult to model, so a mechanism simulating driver experience accumulation procedure is absent in existing methods, and the existing methods usually follow the technique line of saliency prediction methods to predict driver attention. In this paper, we propose a FeedBack Loop Network (FBLNet), which attempts to model the driving experience accumulation procedure. By over-and-over iterations, FBLNet generates the incremental knowledge that carries rich historically-accumulative long-term temporal information. The incremental knowledge to our model is like the driving experience to humans. Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention. Our model exhibits solid advantage over existing methods, achieving an average 10.3% performance improvement on three public datasets.
translated by 谷歌翻译
医学图像分类已在医学图像分析中广泛采用。但是,由于难以在医疗领域收集和标记数据,医疗图像数据集通常受到高度影响。为了解决这个问题,先前的工作利用类样本作为重新加权或重新采样的先验,但特征表示通常仍然不够歧视。在本文中,我们采用对比度学习来解决长尾医疗失衡问题。具体而言,我们首先提出类别原型和对抗性原型,以产生代表性的对比对。然后,提出了原型重新校准策略来解决高度不平衡的数据分布。最后,统一的原始损失旨在训练我们的框架。总体框架,即作为原型的对比学习(PROCO),以端到端方式统一为单级管道,以减轻医学图像分类中的不平衡问题,这也是与现有作品的独特进步当他们遵循传统的两阶段管道时。对两个高度平衡的医学图像分类数据集进行了广泛的实验表明,我们的方法的表现优于现有的最新方法。
translated by 谷歌翻译
有限的通信资源,例如带宽和能源以及设备之间的数据异质性是联合学习的两个主要瓶颈(FL)。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架,该框架仅汇总负责特征提取的神经网络的下层,而与复杂模式识别相对应的上层仍保留在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下获得了框架的收敛结合。借助此界限,我们定义了一个新的目标函数,名为“计划数据样本量”,以将原始的不明智优化问题转移到可用于设备调度,带宽分配,计算和通信时间分配的可拖动问题中。我们的分析表明,当PMA-FL的沟通和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来解决最佳带宽分配策略,并使用SET扩展算法来解决最佳设备调度。与最先进的基准测试相比,提议的PMA-FL在两个典型的异质数据集(即Minist和CIFAR-10)上提高了2.72%和11.6%的精度。此外,提出的联合动态设备调度和资源优化方法的精度比考虑的基准略高,但它们提供了令人满意的能量和时间缩短:MNIST的29%能量或20%的时间缩短; CIFAR-10的能量和25%的能量或12.5%的时间缩短。
translated by 谷歌翻译
跨模型检索(CMR)是多式化计算和信息检索的重要研究主题,它将一种类型的数据作为查询来检索另一种类型的相关数据,并且已广泛用于许多现实世界应用程序。最近,由剪辑代表的视觉语言预训练模型表明了其在各种视觉和语言相关任务方面学习视觉和文本表示的优势及其令人印象深刻的性能。虽然剪辑以及以前的预训练模型表现出令人遗憾的CMR性能改善,但由于缺乏多式联级关联,很少探索这些预测模型对监督CMR的训练模型的性能和影响。在本文中,我们将剪辑作为当前代表性的视觉 - 语言预训练模型,进行全面的实证研究,并提供对其性能和对监督CMR的影响的见解。为此,我们首先提出了一种新颖的模型剪辑4cmr(\ textBF {Clip for}监督\ textbf {c} ross- \ textbf {m} odal \ textbf {r} etrieval),该剪辑作为骨干网络来执行监督CMR。然后,我们在CMR中重新审视现有的损失函数设计,包括最常见的一对损失,类明智的损失和混合动力车,并提供对应用夹子的见解。此外,我们调查了监督CMR中的几个有关问题,并通过CLIP4CMR为该领域提供了新的视角,包括对模态不平衡的鲁棒性和对超参数的敏感性。广泛的实验结果表明,CLIP4CMR实现了SOTA的结果,在基准数据集维基百科,Nus-rive,Pascal句子和XMediaet上有重大改进。我们的数据和代码在https://github.com/zhixiongz/clip4cmr上公开提供。
translated by 谷歌翻译
我们提出了一种基于图形神经网络的图分算法。对于图表中的每个节点,网络输出每个分区的概率。图形神经网络由两个模块组成:嵌入阶段和分区阶段。首先通过最小化由光谱图理论的启发的损耗函数来训练嵌入阶段。分区模块通过损耗函数培训,该损耗函数对应于归一化切割的预期值。神经网络的两部分依赖于Sage卷积层和粗糙化粗糙匹配的图表。神经网络的多级结构受到多重级算法的启发。我们的方法概括了更大的图表,并且与Metis,Scotch和光谱分区相当的分区质量,与Metis和光谱分区相比具有较短的运行时。
translated by 谷歌翻译
这封信提供了在沟通限制下进行多机器人探索的完整框架会议 - 结合措施。考虑到沟通在现实世界中的带宽和范围都受到限制,我们提出了一种轻巧的环境演示方法和有效的合作探索策略。对于较低的带宽,每个机器人都利用特定的多面有来维护自由空间和超级边界信息(SFI)作为勘探决策的来源。为了减少重复的探索,我们开发了一种基于任务的协议,该协议驱动机器人以稳定的会合方式共享收集的信息。我们还为集中式和分散案件设计了完整的路径计划计划。为了验证我们的框架是实用且通用的,我们提出了广泛的基准,并将系统部署到多UGV和多UAV平台中。
translated by 谷歌翻译
机器学习已开始在许多应用中发挥核心作用。这些应用程序中的许多应用程序通常还涉及由于设计约束(例如多元系统)或计算/隐私原因(例如,在智能手机数据上学习),这些数据集分布在多个计算设备/机器上。这样的应用程序通常需要以分散的方式执行学习任务,其中没有直接连接到所有节点的中央服务器。在现实世界中的分散设置中,由于设备故障,网络攻击等,节点容易出现未发现的故障,这可能会崩溃非稳固的学习算法。本文的重点是在发生拜占庭失败的节点的存在下对分散学习的鲁棒化。拜占庭故障模型允许故障节点任意偏离其预期行为,从而确保设计最健壮的算法的设计。但是,与分布式学习相反,对分散学习中拜占庭式的弹性的研究仍处于起步阶段。特别是,现有的拜占庭式分散学习方法要么不能很好地扩展到大规模的机器学习模型,要么缺乏统计收敛性可确保有助于表征其概括错误。在本文中,引入了一个可扩展的,拜占庭式的分散的机器学习框架,称为拜占庭的分散梯度下降(桥梁)。本文中还提供了强烈凸出问题和一类非凸问题的算法和统计收敛保证。此外,使用大规模的分散学习实验来确定桥梁框架是可扩展的,并且为拜占庭式弹性凸和非convex学习提供了竞争结果。
translated by 谷歌翻译